Crystal Structure Analysis of La₂Ni₆CoD_x During Deuterium Absorption Process

Kenji Iwase,*^{,†} Kazuhiro Mori,[‡] Suguru Tashiro,[†] Hitoshi Yokota,[†] and Tetsuya Suzuki[†]

[†]Department of Materials Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi 316-8511, Japan [‡]Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan

ABSTRACT: The crystal structures of La₂Ni₆CoD_x (x = 5.2 and 9.6) were determined by *in situ* neutron diffraction along the P–C isotherm. La₂Ni₆CoD_{5.2} (phase I) was found to be orthorhombic with lattice parameters a = 0.500670(2) nm, b = 0.867211(4) nm, and c = 2.99569(7) nm. The 10 deuterium sites were located in the MgZn₂-type and CaCu₅-type cells, with deuterium contents of 0.95 D/M and 0.39 D/M, respectively. The full deuteride La₂Ni₆CoD_{9.6} (phase II) was monoclinic with lattice parameters a =0.516407(3) nm, b = 0.894496(6) nm, c = 3.11206(1) nm, and $\beta = 90.15(1)^{\circ}$. The phase II had 11 sites for deuterium occupation. The deuterium contents of the MgZn₂-type and the CaCu₅-type cell were 1.63 D/M and 0.78 D/M, respectively. The sequence of phase transformation of La₂Ni₆Co was hexagonal, followed by orthorhombic (phase I), and then monoclinic (phase II), for the first absorption process. The phase transformation resulted in lowered symmetry and the variation of deuterium atom occupation.

1. INTRODUCTION

La–Ni intermetallic compounds have been investigated as hydrogen storage materials. The phase diagram of the La–Ni system shows nine phases in the equilibrium state: La₃Ni, La₇Ni₃, LaNi, La₂Ni₃, La₇Ni₁₆, LaNi₃, La₂Ni₇, La₅Ni₁₉, and LaNi₅.^{1,2} Among them, superlattice alloys LaNi₃, La₂Ni₇, and La₅Ni₁₉ consist of cells with MgZn₂-type and CaCu₅-type structures stacked along the *c*-axis in ratios of 1:1 to 1:3. LaNi₃ shows a rhombohedral PuNi₃-type structure with lattice parameters of *a* = 0.5083 nm and *c* = 2.509 nm.³ La₂Ni₇ has two types of crystal structure: a hexagonal Ce₂Ni₇-type structure with *a* = 0.5058 nm and *c* = 2.471 nm, or a rhombohedral Gd₂Co₇-type structure with *a* = 0.5056 nm and *c* = 3.698 nm.^{3,4} La₅Ni₁₉ shows a rhombohedral Ce₅Co₁₉-type structure.²

We previously reported the hydrogenation property of Ce_2Ni_7 -type La_2Ni_7 by means of *in situ* X-ray diffraction (XRD).⁵ In the first absorption process, the plateau was observed at 0.57 MPa. The maximum hydrogen capacity reached 1.24 H/M, but after the first desorption process 0.74 H/M of hydrogen remained in the sample. The reversible capacity is small. The metal sublattice of La_2Ni_7 changes with increasing hydrogen content to orthorhombic (*Pbcn*) at $La_2Ni_7H_{7.1}$ and monoclinic (*C2/c*) at $La_2Ni_7H_{1.8}$.

Colinet and Pasturel reported the P–C isotherm of LaNi_{5-x}Co_x at 298 K.⁶ LaNi₃Co₂ showed two plateaus in the absorption–desorption isotherm. The first plateau appeared at 0.02 MPa and the second at 0.6 MPa in the P–C isotherm of 298 K. The length of the first plateau is 6 times wider than the second plateau. The enthalpy of the hydrogenation reaction was –40 kJ/mol H₂, compared with –32 kJ/mol H₂ for LaNi₅. It is also noted that the pressure in the first plateau decreased with increasing Co substitution.

Nakamura et al. reported the phase transformation in LaNi₃Co₂ with the CaCu₅-type structure (*P6/mmm*), upon hydrogenation, by *in situ* XRD.⁷ The alloy showed α (hexagonal: *P6/mmm*), β (orthorhombic: *Cmmm*), γ (orthorhombic: *Im2m*), and δ (hexagonal: *P6/mmm*) hydride phases with increasing hydrogen content. The phase transformation was accompanied by anisotropic lattice expansion. LaNi₅ with the hexagonal *P6/mmm* structure transformed to LaNi₅D₇ with *P6₃mc* space group,^{8,9} while the phase transformation of LaNi₃Co₂ with increasing hydrogen content was different from LaNi₅.

This paper presents results of in situ neutron diffraction measurement of $La_2Ni_6CoD_x$ (x = 5.2 and 9.6) during first absorption. It is of interest whether the phase transformation and deuterium atom occupation of La2Ni7-based superlattice alloy are affected by substitution of Co for Ni. In order to clarify the phase transformation along the P-C isotherm, deuterium atom positions and occupancies were refined by the Rietveld method. The volumes of the unit cell, and the MgZn₂-type and CaCu₅-type cells, expand anisotropically depending on the deuterium location and occupation. Deuterium atoms occupy interstitial sites in the metal lattice, and the related polyhedrons are deformed by deviation of deuterium atoms from the centers of these polyhedrons. The deuterium distribution of the MgZn₂-type and CaCu₅-type cells is related to the phase transformation. It is necessary to refine the structural parameters during the deuterium absorption process.

Received: June 8, 2015 Published: August 12, 2015

2. EXPERIMENTAL SECTION

La₂Ni₆Co alloy was prepared by arc-melting La, Ni, and Co metals (99.9%) in an Ar atmosphere. The obtained ingot was annealed at 1153 K for 63 h under reduced pressure $(2.0 \times 10^{-2} \text{ Pa})$ and quenched in ice water. The P–C isotherm was measured using the Sieverts method. The sample was evacuated at 393 K for 1 h before deuteride for pretreatment of activation.

Neutron diffraction data were taken on a TOF (time-of-flight) diffractometer iMATERIA^{10–12} at J-PARC in Japan. The diffractometer views a liquid hydrogen moderator and has an incident flight path of 26.5 m. The high-resolution diffraction pattern was recorded by a backward detector bank located 1.9 m from the sample position. The detector bank contains 416 one-dimensional ³He PSDs (position sensitive detectors). The obtained diffraction pattern covers the *d* range 0.018–0.5 nm with resolution of $\Delta d/d = 0.16\%$. The Rietveld refinement program for TOF neutron diffraction, *Z*-Rietveld, was used to analyze the diffraction data.^{13,14}

In situ neutron diffraction data were taken using a vanadium sample holder with a 2 μ m copper coating on the inner surface to prevent reaction with hydrogen.¹⁵ The vanadium can was 70 mm long, with 8 mm inner diameter and 0.3 mm wall thickness. A 4.2 g sample was loaded in the sample holder.

3. RESULTS

3.1. Crystal Structure of La₂Ni₆Co. The structural parameters of the alloy were determined by Rietveld refinement of the neutron diffraction data in the *d* region between 0.05 and 0.45 nm. The diffraction pattern of La₂Ni₆Co is shown in Figure 1, along with those of the deuteride phases I and II. The

Figure 1. Neutron diffraction patterns of the original alloy, La_2Ni_6Co , and deuteride phases I and II.

model was based on the Ce₂Ni₇-type structure with space group $P6_3/mmc$ (No. 194) reported for La₂Ni₇.^{4,5} Co atoms substitute only Ni at 6*h* site of the z = 1/4 plane inside the CaCu₅-type cell, which provided a not good agreement with the observed pattern. The same tendency was also seen in other Ni sites of both MgZn₂-type cell and CaCu₅-type cell. Then the substituted Co atoms were assumed to be located randomly at the Ni site of 2*a*, 4*e*, 4*f*, 6*h*, and 12*k*, with a ratio of 0.14:0.86; this one agreed fairly well with the observed data. The refined lattice parameters were a = 0.507 121(5) nm and c = 2.470 58(5) nm.

3.2. P–C lsotherm of La₂Ni₆Co-D System. The P–C isotherm of La₂Ni₆Co for the first absorption–desorption process at 298 K is shown in Figure 2. In the absorption process, the equilibrium pressure increased gradually up to 0.7 D/M and showed a plateau between 0.7 and 1.0 D/M. The plateau pressure was approximately 0.4 MPa. The maximum deuterium capacity reached 1.1 D/M at 1.0 MPa. The P–C isotherm of desorption and absorption differed. The plateau

Figure 2. Pressure–composition isotherms of the La_2Ni_6Co -D system for the first absorption–desorption process at 298 K.

region was not observed in the desorption process. After the desorption measurement, 0.57 D/M of deuterium remained in the alloy. The hydrogenation property of La_2Ni_6Co was similar to that of La_2Ni_7 .⁵

3.3. Diffraction Profile Change During Deuterium Absorption Process. *In situ* neutron diffraction patterns of the original alloy and two deuteride phases (phase I and phase II indicated in the P–C isotherm of Figure 2) are shown in Figure 1. The deuterium contents were approximately 0.6 D/M and 1.1 D/M. The three diffraction profiles are clearly different from each other, indicating structural transformation as deuterium content increased.

3.4. Structural Analyses of Phase I and Phase II. Yartys et al. reported the crystal structure of $La_2Ni_7D_{6.5}$ by *ex situ* neutron diffraction.¹⁶ They reported that $La_2Ni_7D_{6.5}$ had the same hexagonal symmetry ($P6_3/mmc$) as the original alloy. In this work, an initial structural model of $La_2Ni_6CoD_{5.2}$ (phase I), based on the same model as $La_2Ni_7D_{6.5}$, was developed. The calculated pattern did not fit well with the observed pattern; the goodness of fit parameter *S* was 9.5.

The structural model of the metal sublattice of La2Ni7H71 with an orthorhombic Pbcn (No. 60) symmetry has been reported by XRD.⁵ The diffraction data of La₂Ni₆CoD_{5.2} (phase I) was analyzed with this model, allocating appropriate deuterium occupancies. The model gave a good fit as shown in Figure 3. The refined structural parameters and the R factors are listed in Table 1. The refined lattice parameters were a =0.500670(2) nm, b = 0.867211(4) nm, and c = 2.99569(7) nm. The La₂Ni₆CoD_{5,2} crystal structure is shown in Figure 4. Deuterium atoms occupy both MgZn₂-type and CaCu₅-type cells. We have determined 10 sites for deuterium occupation in La₂Ni₆CoD_{5.2} by Rietveld refinement. D1, D2, and D4-D6 atoms occupy the MgZn₂-type cell as shown in Figure 4. D2 and D4 occupy the La₃(Ni/Co) tetrahedral site. The occupation factors of those tetrahedral sites were approximately 0.49. D1 and D6 atoms occupy the $La_3(Ni/Co)_3$ octahedral site, and D5 atoms occupy the $La_3(Ni/Co)_2$ pentahedral site. D7, D8, and D10 atoms are located in the CaCu₅-type cell. D7 atoms occupy the 4c site of the $La_2(Ni/Co)_2$ tetrahedral site. D8 atoms are located at the $La_2(Ni/Co)_4$ octahedral site with an occupation factor of g = 0.95(4), the maximum value in the

Figure 3. Rietveld refinement of neutron diffraction data for orthorhombic La2Ni6CoD5.2. The solid line indicates the calculated intensities, with superimposed points denoting the observed intensities. Data d values around 0.28 nm, which contained irrational peaks from frame overlaps of neutrons, were excluded from the refinement.

deuterium occupation of the La2Ni6CoD52. D10 atoms occupy the $La_2(Ni/Co)_3$ pentahedral site. D3 and D9 are located at the $La_2(Ni/Co)_2$ site near the boundary between the MgZn₂-type and the CaCu₅-type cells. The deuterium content of the $MgZn_2$ -type cell indicated 0.95 D/M, more than double that of the CaCu₅-type cell (D/M = 0.39).

The monoclinic model with space group C2/c (No. 15) was adopted for La2Ni6CoD9.6 (phase II). This model was reported for the metal sublattice of La₂Ni₇H_{10.8} by XRD.⁵ The Rietveld refinement pattern of La2Ni6CoD9.6 is shown in Figure 5, with the structural parameters shown in Table 2. The refined lattice parameters were a = 0.51640(3) nm, b = 0.894496(6) nm, c =3.112.06 (1) nm, and $\beta = 90.15(1)^{\circ}$. As shown in Figure 6, D1-D5 atoms were located in the MgZn₂-type cell, and D7, D8, D10, and D11 atoms in the CaCu₅-type cell. Deuterium atoms occupied the 8f and 4e sites as shown in Table 2. The occupation factors of D1-D3, D8, D10, and D11 were 0.90(2)-0.98(1), indicating almost full occupation. The other five deuterium atoms had lower occupations around 0.8-0.9.

atom	site	g	
La1	8 <i>d</i>	1	

Figure 4. Crystal structure of La₂Ni₆CoD_{5,2} with Pbcn symmetry.

D6 and D9 atoms located in the boundary between the MgZn₂type and CaCu₅-type cells had occupation factors g(D6) =0.85(4) and g(D9) = 0.91(3). The analysis indicated that the deuterium contents of the MgZn₂-type and CaCu₅-type cells were 1.63 D/M and 0.78 D/M, respectively.

4. DISCUSSION

4.1. La₂Ni₆CoD_{5.2} with Orthorhombic Structure. Yartys et al. reported the crystal structure of La2Ni7D6.5 using neutron diffraction,¹⁶ where the structural model was based on space group $P6_3/mmc$ of the original alloy. The volume expansions of the MgZn₂-type cell, the CaCu₅-type cell, and the unit cell from the original alloy were -3.0%, 47.8%, and 14.9%, respectively. The deuterium content of the MgZn₂-type cell was approximately 1.6 D/M, while the absorbed deuterium atom

e 1. Structural	Parameters of	of La ₂ Ni ₆ CoD _{5.2} ^a				
atom	site	g	x	у	z	$B (10^{-2} \text{ nm}^2)$
La1	8 <i>d</i>	1	0.000(1)	0.331(2)	0.186(1)	0.7(1)
La2	8 <i>d</i>	1	0.000(2)	0.335(4)	0.046(7)	3.7(3)
(Ni/Co)1	4 <i>a</i>	0.86/0.14	0	0	0	2.0(7)
(Ni/Co)2	8 <i>d</i>	0.86/0.14	0.500(1)	0.164(3)	0.183(5)	0.4(2)
(Ni/Co)3	4 <i>c</i>	0.86/0.14	0	0.835(8)	¹ / ₄	0.6(4)
(Ni/Co)4	8 <i>d</i>	0.86/0.14	0.242(3)	0.082(7)	0.250(1)	0.2(5)
(Ni/Co)5	8 <i>d</i>	0.86/0.14	0.000	0.832(7)	0.110(2)	0.2(3)
(Ni/Co)6	8 <i>d</i>	0.86/0.14	0.251(6)	0.078(3)	0.114(3)	0.2(2)
(Ni/Co)7	8 <i>d</i>	0.86/0.14	0.746(1)	0.085(3)	0.118(9)	0.1(3)
(Ni/Co)8	8 <i>d</i>	0.86/0.14	0.000(1)	0.000(1)	0.181(7)	0.7(5)
D1	8 <i>d</i>	0.45(4)	0.444(5)	0.475(8)	0.077(2)	3.7(7)
D2	8 <i>d</i>	0.48(2)	0.501(1)	0.333(1)	0.015(3)	1.5(5)
D3	8 <i>d</i>	0.49(1)	0.478(1)	0.683(5)	0.103(1)	2.2(4)
D4	8 <i>d</i>	0.49(1)	0.270(2)	0.394(1)	0.990(2)	1.5(5)
D5	8 <i>d</i>	0.48(2)	0.494(6)	0.521(9)	0.050(2)	1.0(3)
D6	8 <i>d</i>	0.45(3)	0.957(3)	0.675(5)	0.080(6)	0.8(2)
D7	4 <i>c</i>	0.85(4)	0	0.183(2)	¹ / ₄	4.4(8)
D8	8 <i>d</i>	0.95(4)	0.569(4)	0.324(1)	0.161(7)	3.5(4)
D9	8 <i>d</i>	0.48(1)	0.530(1)	0.770(3)	0.118(7)	1.2(2)
D10	8 <i>d</i>	0.47(2)	0.500(3)	0.000(1)	0.275(1)	4.0(3)

^{*a*}Space group: *Pbcn* (No. 60), $a = 0.500\ 670(2)$ nm, $b = 0.867\ 211(4)$ nm, and $c = 2.995\ 69(7)$ nm. $R_{wp} = 7.6\%$, $R_p = 4.8\%$, $R_e = 1.4\%$, and S = 5.5.

8652

Figure 5. Rietveld refinement of neutron diffraction data for monoclinic $La_2Ni_6CoD_{9,6}$. Data *d* values around 0.28 nm were excluded from the refinement.

did not exist in the CaCu₅-type cell. Deuterium atoms occupy the La_3Ni_3 octahedral sites and the La_3Ni_1 and La_2Ni_2 tetrahedral sites of the MgZn₂-type cell.

The expansion of lattice axes, the unit cell of $La_2Ni_6CoD_{5.2}$, and the volumes of $MgZn_2$ -type and $CaCu_5$ -type cells are listed in Table 3. The lattice expanded anisotropically during transformation from the alloy to phase I; the elongation of the *c* axis was marked. The volume expansions of the $MgZn_2$ type cell, the $CaCu_5$ -type cell, and the unit cell from the alloy were 49.8%, 1.9%, and 18.2%, respectively. The result is similar to that of La_2Ni_7 .⁵ The deuterium contents of the $MgZn_2$ -type cell and the $CaCu_5$ -type cell were 0.95 D/M and 0.39 D/M, respectively, a result comparable with that of $La_2Ni_7D_{6.5}$.¹⁶ Deuterium atoms occupy only the $MgZn_2$ -type cell of $La_2Ni_7D_{6.5}$.¹⁶ The occupation factors of D3 and other D atoms are 0.5 and 1. Considering the deuterium atomic position and the occupation factor, Westlake's criterion for H– H distance (0.21 nm) is not satisfied.¹⁷ The two results indicate

Table 2. Structural Parameters of La ₂ Ni ₆ CoL	106 ^a
---	------------------

Figure 6. Crystal structure of $La_2Ni_6CoD_{9.6}$ with C2/c symmetry.

a wide discrepancy. In our results, the volume expansion and the deuterium content of the $MgZn_2$ -type cell are evidently larger than those of the $CaCu_5$ -type cell. Now we focus on the deuterium occupation of D2, D4, and D5. D2 and D4 atoms occupy the La_3Ni_1 tetrahedral site, and D5 atoms occupy the La_3Ni_2 pentahedral site. These polyhedrons are deformed in comparison with the original alloy. The D2–D4, D2–D5, and D4–D5 distances are 0.148, 0.193, and 0.183 nm, which do not satisfy Westlake's criterion.¹⁷ The occupation factors of D2, D4, and D5 are under 0.5. If the D2 atom occupies the 8*d* site, the nearest neighbor 8*d* sites for D4 and D5 atoms cannot be occupied. D2 and D4 atoms are located in layer 1 in the $MgZn_2$ -type cell as shown in Figure 4. Layer 1 exhibits anisotropic expansion along the *c*-axis with volume expansion of

atom	site	g	x	у	z	$B (10^{-2} \text{ nm}^2)$
Lal	8f	1	0.000(1)	0.321(7)	0.321(1)	1.7(1)
La2	8f	1	0.000(2)	0.330(2)	0.456(3)	3.2(3)
(Ni/Co)1	4 <i>a</i>	0.86/0.14	0	0	0	2.1(2)
(Ni/Co)2	8f	0.86/0.14	0.000(2)	0.000(1)	0.180(2)	0.3(2)
(Ni/Co)3	8f	0.86/0.14	0.000(3)	0.656(5)	0.180(2)	1.2(2)
(Ni/Co)4	8f	0.86/0.14	0.256(6)	0.595(2)	0.250(1)	0.6(2)
(Ni/Co)5	4e	0.86/0.14	0	0.834(1)	¹ / ₄	2.7(2)
(Ni/Co)6	8f	0.86/0.14	0.500(2)	0.322(4)	0.117(2)	0.8(2)
(Ni/Co)7	8f	0.86/0.14	0.263(7)	0.573(7)	0.109(2)	0.2(1)
(Ni/Co)8	8f	0.86/0.14	0.755(4)	0.576(2)	0.110(4)	0.2(1)
D1	8f	0.90(2)	0.496(5)	0.500(1)	0.450(6)	2.5(2)
D2	8f	0.94(1)	0.750(2)	0.750(2)	0.000(1)	3.5(7)
D3	8f	0.94(3)	0.761(5)	0.578(1)	0.052(1)	2.3(2)
D4	8f	0.80(5)	0.252(5)	0.572(7)	0.016(4)	1.1(2)
D5	8f	0.82(5)	0.000(4)	0.640(7)	0.416(3)	3.0(4)
D6	8f	0.85(4)	0.778(1)	0.370(2)	0.388(7)	1.3(4)
D7	4 <i>e</i>	0.88(4)	0	0.000(3)	¹ / ₄	2.3(2)
D8	8f	0.94(2)	0.525(5)	0.325(6)	0.170(4)	2.1(3)
D9	8f	0.91(3)	0.275(7)	0.760(1)	0.108(6)	2.3(2)
D10	8f	0.98(1)	0.278(3)	0.565(2)	0.157(5)	3.6(6)
D11	8f	0.96(3)	0.764(1)	0.566(5)	0.191(6)	1.2(5)

^{*a*}Space group: C2/c (No. 15), a = 0.516407(3) nm, b = 0.894496(6) nm, c = 3.11206(1) nm, and $\beta = 90.15(1)^{\circ}$. $R_{wp} = 6.3\%$, $R_p = 4.6\%$, $R_e = 1.2\%$, and S = 5.3.

CaCu₅-type cell

MgZn₂-type cell

13.4

62.4

	expansion 1 (%) alloy \rightarrow I	expansion 2 (%) I \rightarrow II	expansion 3 (%) alloy \rightarrow II
а	-1.3	3.2	1.8
Ь	-1.3	3.2	1.8
С	21.3	4.2	26.0
unit cell volume	18.2	10.8	30.6

Table 3. Expansion of Lattice Axes, Unit Cell Volumes, and Volumes of the MgZn₂-Type and CaCu₅-Type Cells^a

^aExpansions 1, 2, and 3 refer to those from original alloy to phase I, phase I to phase II, and original alloy to phase II, respectively.

1.9

49.8

81%. It is suggested that La_2Ni_6Co with a hexagonal structure $(P6_3/mmc)$ transforms into $La_2Ni_6CoD_{5.2}$ with orthorhombic structure (Pbcn) by the anisotropic volume expansion of the MgZn₂-type cell. D2 and D4 atoms occupy the La₃Ni₁ tetrahedral site, because La exhibits a high affinity for H.

4.2. La₂Ni₆CoD_{9.6} with Monoclinic Structure. The expansions of the lattice axes and the unit cell of La2Ni6CoD9.6 are listed in Table 3. The lattice expands almost isotropically during transformation from phase I to phase II, with the a, b, and c axes expanding by 3.2-4.2%. The volume expansions of MgZn₂-type cell, CaCu₅-type cell, and the unit cell are 8.4%, 11.3%, and 10.8%, respectively. The deuterium positions and the occupation factors were determined (Table 2). The deuterium occupation factors of all sites exceeded 0.80. The deuterium content of the MgZn₂-type and CaCu₅-type cells was 1.63 D/M and 0.78 D/M, respectively. The deuterium contents of both cells increased during phase transformation from phase I to the phase II. D7 atoms occupied the 4e site of the Ni₅ pentahedron in CaCu₅-type cell. The pentahedral site consists only of Ni. The occupation sites of phase I were formed by La and Ni atoms. The deuterium occupation sites in the CaCu₅type cell are pentahedral (Ni₅, La₂Ni₃) and octahedral (La₂Ni₄). These sites are deformed evidently in comparison with the original alloy and the phase I. The same tendency is also seen in the MgZn₂-type cell.

4.3. Deuterium Content of MgZn₂-Type Cell and CaCu₅-Type Cell. Guzuki et al. reported the crystal structure and the P-C isotherm of La1.63Mg0.37Ni7 with Ce2Ni7-type structure.¹⁸ Deuterium atom positions and occupancies of $La_{1.63}Mg_{0.37}Ni_7D_{8.8}$ were refined by ex situ neutron diffraction. La_{1.63}Mg_{0.37}Ni₇D_{8.8} had the same hexagonal symmetry (P6₃/ mmc) as the original alloy. The deuterium contents of the MgZn₂-type and the CaCu₅-type cell were 1.31 D/M and 0.86 D/M, respectively. The maximum deuterium capacity reached 0.97 D/M. Zhang et al. reported the crystal structure of Ca₃Mg₂Ni₁₃ deuteride and the P–C isotherm.¹⁹ The maximum deuterium capacity reached 0.87 D/M. Ca₃Mg₂Ni₁₃D₁₅₆ was taken by in situ neutron diffraction at deuterium pressure 2.9720 MPa. The structure of the deuteride phase was the same symmetry $(R\overline{3}m)$ as the original alloy. The deuterium contents of the MgZn₂-type and the CaCu₅-type cell were 0.9 D/M and 0.8 D/M. The crystal structure of Nd₂MgNi₉ deuteride and the P-C isotherm were reported by Yartys and Denys.²⁰ Nd2MgNi9D11.9 was taken by in situ neutron diffraction. The refined structural model was PuNi3-type, which was the same symmetry as the original alloy. The deuterium content of the MgZn₂-type and the CaCu₅-type cell were 0.93 D/M and 1.05 D/M. In this study, the full deuteride La2Ni6CoD9.6 was monoclinic (C2/c), which was the different symmetry $(P6_3/c)$ mmc) as the original alloy. The deuterium content of the MgZn₂-type cell indicated 1.63 D/M, more than double that of the CaCu₅-type cell (D/M = 0.78).

Mg atoms substitute La, Ca, and Nd sites of MgZn₂-type cell. The difference of the deuterium content between the MgZn₂type cell and the CaCu₅-type cell decreases by Mg substitution. The plateau region of Mg-substitution alloy was larger than that of Mg-free alloy.²¹ The phase transition is not observed in Mgsubstitution alloy, which may be related to the deuterium content of the MgZn₂-type cell and the CaCu₅-type cell.

5. CONCLUSIONS

11.3

8.4

We investigated the crystal structure and the phase transformation of La₂Ni₆CoD_x (x = 5.2 and 9.6) during the first absorption process by in situ neutron diffraction. The phase I of $La_2Ni_6CoD_{5,2}$ has an orthorhombic *Pbcn* structure (*a* = 0.500670(2) nm, b = 0.867211(4) nm, and c = 2.99569(7)nm) with 10 deuterium sites: five sites exist in the MgZn₂-type cell, three in the CaCu_s-type cell, and two in the boundary between the cells. The deuterium contents of the MgZn₂-type cell and CaCu₅-type cell were 0.95 D/M and 0.39 D/M, respectively. The phase II of La2Ni6CoD9.6 is described by a monoclinic structure with space group C2/c. The lattice parameters are a = 0.516407 (3) nm, b = 0.894496(6) nm, c = 3.11206(1) nm, and $\beta = 90.15(1)^{\circ}$. The deuterium atoms occupy 11 sites: five sites in the MgZn₂-type cell, four in the CaCu₅-type cell, and two sites in the boundary between the cells. The deuterium contents of the MgZn₂-type cell and CaCu₅-type cell were 1.63 D/M and 0.78 D/M, respectively. The deuterium content of the MgZn₂-type cell in phase I and phase II is clearly larger than that of the CaCu₅-type cell. The phase transformation of La2Ni6Co followed the order hexagonal, orthorhombic (phase I), and then monoclinic (phase II), for the first absorption process, accompanied by anisotropic lattice expansion.

AUTHOR INFORMATION

Corresponding Author

*E-mail: fbiwase@mx.ibaraki.ac.jp. Phone: +81-294-38-5327. Fax: +81-294-38-5226.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors wish to thank Emeritus Professor H. Asano (University of Tsukuba) for the helpful advice, and Dr. T. Ishigaki (Ibaraki University) and Dr. A. Hoshikawa (Ibaraki University) for technical assistance in neutron diffraction. This work was supported by a Grant-in-Aid for Creative Scientific Research (No. 25790080) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

REFERENCES

- (1) Binary Alloy Phase Diagrams, 2nd ed., plus updates; Okamoto, H., Ed.; ASM International: Materials Park, OH, 1990.
- (2) Yamamoto, T.; Inui, H.; Yamaguchi, M.; Sato, K.; Fujitani, S.; Yonezu, I.; Nishio, K. *Acta Mater.* **1997**, *45*, 5213–5221.
- (3) Buschow, K. H. J.; Van Der Goot, A. S. J. Less-Common Met. 1970, 22, 419-428.
- (4) Virkar, A. V.; Raman, A. J. Less-Common Met. **1969**, *18*, 59–66. (5) Iwase, K.; Sakaki, K.; Nakamura, Y.; Akiba, E. Inorg. Chem. **2013**,
- 52, 10105–10111.
- (6) Colinet, C.; Pasturel, A. J. Less-Common Met. 1987, 134, 109–122.
- (7) Nakamura, Y.; Nomiyama, T.; Akiba, E. J. Alloys Compd. 2006, 413, 54-62.
- (8) Thompson, P.; Reilly, J. J.; Corliss, L. M.; Hastings, J. M.; Hempelmann, R. J. Phys. F: Met. Phys. 1986, 16, 675–685.
- (9) Lartigue, C.; Le Bail, A.; Percheron-Guegan, A. J. Less-Common Met. 1987, 129, 65-76.
- (10) Ishigaki, T.; Harjo, S.; Yonemura, M.; Kamiyama, T.; Aizawa, K.; Oikawa, K.; Sakuma, T.; Morii, Y.; Arai, M.; Ebata, K.; Takano, Y.; Kasao, T. *Phys. B* **2006**, 385–386, 1022–1024.
- (11) Ishigaki, T.; Hoshikawa, A.; Yonemura, M.; Morishima, T.; Kamiyama, T.; Oishi, R.; Aizawa, K.; Sakuma, T.; Tomota, Y.; Arai, M.; Hayashi, M.; Ebata, K.; Komatsuzaki, K.; Asano, H.; Tanaka, Y.; Kasao, T. Nucl. Instrum. Methods Phys. Res., Sect. A **2009**, 600, 189–191.
- (12) Harjo, S.; Kamiyama, T.; Torii, S.; Ishigaki, T.; Yonemura, M. *Phys. B* **2006**, 385–386, 1025–1028.
- (13) Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.; Ishigaki, T.; Morishima, T.; Mori, K.; Kamiyama, T. *Nucl. Instrum. Methods Phys. Res., Sect. A* **2009**, *600*, 94–96.
- (14) Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; Hoshikawa, A.; Torii, S.; Ishigaki, T.; Kamiyama, T. *J. Appl. Crystallogr.* **2012**, *45*, 299–308.
- (15) Iwase, K.; Mori, K.; Hishinuma, Y.; Hasegawa, Y.; Iimura, S.; Ishikawa, H.; Kamoshida, T.; Ishigaki, T. *Int. J. Hydrogen Energy* **2011**, *36*, 3062–3066.
- (16) Yartys, V. A.; Riabov, A. B.; Denys, R. V.; Sato, M.; Delaplane, R. G. J. J. Alloys Compd. **2007**, 408-412, 273-279.
- (17) Westlake, D. G. J. Less-Common Met. 1983, 91, 275-292.
- (18) Guzik, M. N.; Hauback, B. C.; Yvon, K. J. Solid State Chem. 2012, 186, 9–16.
- (19) Zhang, Q.; Sun, D.; Zhang, J.; Latroche, M.; Ouyang, L.; Zhu, M. J. Phys. Chem. C 2014, 118, 4626–4633.
- (20) Yartys, V.; Denys, R. J. Alloys Compd. 2015, DOI: 10.1016/ j.jallcom.2014.12.091.
- (21) Iwase, K.; Terashita, N.; Mori, K.; Tashiro, S.; Yokota, H.; Suzuki, T. Int. J. Hydrogen Energy **2014**, *39*, 12773–12777.